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Abstract. The paper is devoted to an optimal trajectory planning problem considered as a problem of constrained 

optimal control for dynamical systems. It is one of the fundamental problems in robotics, biomechanics, 

aeronautics and many other areas of application of control theory. The simplest version of this problem supposes 

that there are given sequences of target points and prescribed times, and we are required to be at the given point at 

the prescribed time. However, in most of the applications, it is enough when the trajectory passes close to the 

assigned point at the prescribed time. So, the location conditions could be considered as the inequality type 

constraints. The aim of this research is to reduce such an optimal control problem to the problem of splines in 

convex sets, which could be analysed and solved by methods of the general theory of splines. Dynamical systems 

associated with the second order linear differential equation with initial conditions are investigated in the paper 

(the restriction on the order of equations is not essential). We consider this system as a curve generator. The goal 

is to find a control law by minimization of the quadratic cost function under inequality type constraints on location 

conditions. A spline-based numerical scheme for some cases of such optimal control problems is proposed in this 

paper. In particular, the method of adding-removing spline interpolation knots is applied to the construction of its 

solution. The suggested technique is illustrated by numerical examples. 
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Introduction 

This paper is devoted to the trajectory planning as a special case of problems of optimal control, 

i.e., determining control and state trajectories for a linear dynamical system over a period of time to 

minimize an objective functional. The dynamical system under consideration is realized as a curve 

generator. The goal is to find a control law which will drive the output trajectory in such a way that 

constraints on location conditions are satisfied.  

The trajectory planning problem is a fundamental problem in many fields connected with robots, 

mechanics and so on (see, e.g., [1-6]). Usually this problem consists of constructing a function of 

time that satisfies initial conditions together with other requirements such as via points, obstacle 

avoidance or reflection of the dynamics of the considered system. When via points are specified, 

trajectories may be constructed as interpolating curves to pass the via points or as approximating 

curves to pass near the points (see, e.g., [7; 8]). A version of the problem when we are required to 

be at the point at the fixed time is typical for such problems as path planning in air traffic control and 

many problems in industrial robotics because in the industrial applications such as cutting, welding, 

assembling and so on, the robots are strongly required to follow a desired trajectory. However, in the 

most of applications, the requirement to pass through specific points at specific times is overly 

restrictive, it is enough when we go reasonably close to these given points. As it is noted in [2], these 

types of relaxed interpolation problems exhibit properties that are desirable for two different reasons. 

First of all, small deviations from the waypoints can result in a significant decrease in the cost and 

secondly, when the data that we work with, is noise contaminated, it is even not desirable to interpolate 

through these points precisely. For example, in applications in the field of robotics the time of passage 

at via points influences not only the kinematic properties of the motion, but also the dynamic ones (see 

specifications in, e.g., [1]). All these restrictions can affect rejection of exact interpolating conditions. 

Typically, some deviations from the exact location are allowed even in air traffic control. As an example, 

passenger comfort requires that accelerations are minimized and that transitions are smooth, so we 

cannot require the exact interpolation in this situation. The problems with some allowed deviations from 

the given points or the problems of the obstacle avoidance trajectory planning are often treated by 

introducing a cost nonlinear function consisting of the distance to obstacles and some others 

characteristics of the trajectory. Such approach is closely related to the idea of smoothing in the theory 

of splines. 
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Classical polynomial splines are usually used as interpolating splines; that means, they are required 

to pass through target points at prescribed times. Smoothing splines, in contrast, are only required to 

pass “close” to the data points. Specifically, the smoothing spline model is a smooth function s from a 

suitable function space that minimizes the objective functional with a parameter of a weight which can 

be interpreted as a compromise between the smoothing and the closeness of fit to the prescribed values. 

From the point of view of control systems, the smoothing spline model is closely related to the finite 

horizon linear quadratic optimal control problem by treating derivatives of s as a control input (see, e.g., 

[2, 9]). This fact has led to a highly interesting spline model defined by a linear control system called a 

control theoretic spline. Control theoretic splines are introduced as a generalization of smoothing splines 

(see, e.g., [10]). It is shown in [2] and the references therein that a number of smoothing, interpolation 

and trajectory planning problems can be incorporated into control problems and studied using control 

theory and optimization techniques on Hilbert spaces with efficient numerical schemes. Control 

theoretic splines give a richer class of smoothing curves relative to polynomial curves. They have been 

proved to be useful for the construction of solutions in the problems of trajectory planning of robotic 

arms or mobile robots in service applications for human guiding and assistance, and to approximate the 

contour of encountered obstacles in the environment, to the problem of contour modelling or 

reconstruction and so on (see, e.g., [7; 11-15]). It should also be mentioned that in most of the papers 

about control splines (see, e.g., [2; 9; 12]) the problems on splines are reduced to the problem of the 

control theory. The aim of this paper is, on the contrary, to transform the problem of the control theory 

into the corresponding problem of smoothing splines with the aim to use for its analysis methods and 

results of the general theory of splines. 

There are various types of optimal control problems, depending on the performance index, the type 

of time domain (continuous, discrete), the presence of different types of constraints and possibilities to 

choose some free variables. In this paper we consider a dynamical system associated to the second order 

linear differential equation with initial conditions. In general, it can be stated as 

 ],,[),()(),()()( battxtytutMxtx T =+=   (1) 

considered with the initial condition 

 .)( cax =   (2) 

Here x is a vector-valued absolutely continuous function defined on [a, b], M is a given quadratic 

constant matrix and β, γ are given constant vectors of compatible dimensions. We consider system (1)-

(2) as the curve z = y(t) generator. The goal is to find a control law u  L2[a, b] which drives the scalar 

output trajectory close to a sequence of set points at fixed times 

 {(ti, zi): i = 1, 2, . . . , n}, where a < t1 < t2 < . . . < tn ≤ b,  (3) 

by minimization of the objective functional 

 
b

a

dttu )(2 .  (4) 

In the case of trajectory planning, when we need to generate curves that pass exactly through via 

points, we refer to the classical statement of the problem under consideration: 
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but our main interest is to consider the problem when the trajectory passes close to a predefined point at 

the prescribed time. So the location conditions could be considered as the inequality type constraints, 

for example, by using the nonnegative parameters i, i = 1,…,n:  
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In this paper problem (1)-(2) is considered in the case of  



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 25.-27.05.2022. 

 

868 

 








=








=








=








=









−−
=

2

1

2

1

2

1
,,

1

0
,,

10

c

c
c

x

x
x

pq
M




 . 

So dynamical system (1) can be expressed as the second order linear differential equation  

 ),()()()( tutqftfptf =++  

here f is used to denote x1. For this case problem (6) can be rewritten as  
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where y(t) = γ1f(t) + γ2f′(t). 

Spline-Based Approach 

Problem (7) corresponds to the following more general conditional minimization problem: 
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where linear operators T:L2
r[a,b] → L2[a,b] and A:L2

r[a,b] → ℝn + 2 are continuous, L2
r[a,b] is the 

Sobolev space, vectors c  ℝ2, z = (zi)i = 1,…,n and ε = (εi)i = 1,…,n with εi ≥ 0, i = 1,..., n are given. We 

assume that A(L2
r[a,b]) = ℝn + 2. In the case under consideration r = 2 and  

 ,,...,1),()()(,)()()( 21 nit'ftfAfutqft'pft"fTf iii =+==++=   

 )()(),()( 10 a'fAfafAf n == +
.  (9) 

Problem (8) in the case εi = 0, i = 1,..., n, corresponds to the interpolating problem. By the well-

known theorems (see, e.g., Theorems 4.4.2. and 4.5.9. in [16]) its solution is a spline from the space 

 }.0,|],[{),( 2 == TxTskerAxbaLsATS r  

Here and in the sequel kerA is the kernel of operator A and the corresponding inner product is 

denoted by < ・,・ > . The form of splines from S(T, A) depending on the parameters p and q for the 

considered case (9) is obtained in [17] by using the general theorem (see Theorem 1 in [18]) and applying 

functional analysis tools.  

Problem (8) in the case εi > 0, i = 1,..., n, corresponds to the problem (8) on splines in a convex set. 

The conditions for the existence and uniqueness of solution of (8) in this case follow from the next 

theorem (it is a special case of Theorem 7 in [18]). 

Theorem. Under the assumption that kerT is finite-dimensional a solution of problem (8) with 

εi ≥ 0, i = 1,..., n, exists. An element s  L2
r[a,b], such as (As)0 = c1, (As)n + 1 = c2, zi – εi ≤ (As) ≤ zi + εi, 

i = 1,..., n, is a solution of (10) if and only if there exists the vector λ ∈ ℝn + 2 such that 

 T·Ts = A·λ  (10) 

and components λi, i = 1,..., n, satisfy the conditions 
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Under the additional assumption kerT ∩ kerA = {0} this solution is unique. 

This result implies that a solution of problem (8) in this case belongs to S(T, A). To find it we can 

use the method of adding-removing interpolation knots which is considered in details, for example, in 

[19] or [20]. It is an iterative method. We start with a solution s1 obtained by using only the initial 

conditions and denote I1 = . The set of indices Ik ⸦{1,…, n} for interpolation knots ti and numbers di
k 

are specified during iterations. On the k-th step we need to solve the following interpolation problem: to 

construct a spline sk S(T, A) such that the initial conditions (Ask)0 = c1, (Ask)n + 1 = c2 and interpolation 
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conditions written in the form (Ask)i = di
k, i Ik, are satisfied. The iterative step from Ik to Ik + 1 is done 

by adding to Ik all indices i {1,…, n} such that the restriction zi – εi ≤ (As)i ≤ zi + εi is not satisfied. For 

the added index i we take di
k + 1 = zi – εi if zi – εi > (Ask)i and di

k + 1 = zi + εi if zi + εi > (Ask)i. Additionally, 

we remove from Ik all indices iIk such that the rule (12) is not satisfied for the corresponding coefficient 

of sk. To finish the k-th step we also denote di
k + 1 = di

k for Ik + 1 ∩ Ik. If Ik + 1 = Ik then the algorithm ends 

and the obtained sk is a solution of (8). 

We note that a similar method for the construction of a solution of the problem of optimal control 

under fuzzy conditions was considered in [21], but its application to the problem under consideration is 

technically simpler.  

Numerical Example 

We consider problem (7) as (8) with operator T and A defined by (9). The solution of it belongs to 

the corresponding S(T, A). The form of splines from S(T, A) is obtained in [17] and it depends on the 

roots r1, r2 of the equation r2 + pr + q = 0. The following classification has been done in [17]: 

• Class 1 (exponential splines with polynomial coefficients): r1 = r2   ℝ\{0}; 

• Class 2 (exponential splines): r1, r2   ℝ, r1  r2; 

• Class 3 (polynomial-exponential splines): r1, r2   ℝ, r1  r2, r1  0, r2 = 0; 

• Class 4 (polynomial splines): r1 = r2 = 0; 

• Class 5 (trigonometric splines with polynomial coefficients): r1,2 =  iη  0; 

• Class 6 (trigonometric splines with exponential-polynomial coefficients): r1,2 = iη with η0 

and ζ0. 

The following numerical example is considered to illustrate the proposed technique. The numerical 

results are obtained by Maple. 

Example. We consider the numerical example for the problem (7) with p = -2, q = 1, γ1 = 1 and 

γ2 = 0, interval [a, b] = [0, 4], the initial conditions are with c1 = 6, c2 = 0 and desired points are (1, 1.5), 

(1.5, 2.8), (2, 4), (3, 1), (4, 5.5), so n = 5. The allowed deviations from these points are given by εi = 0.5, 

i = 1,…n.  

These values of p and q correspond to r1 = r2 = 1, i.e. the solution of (7) is exponential spline with 

polynomial coefficients in the following form, as it is obtained in [17]:  
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which coefficients fulfil the following system  

 ,0)()( 11

110

1

121 =+++ +

=


ar

n

tr
n

i

i erer i 

 ,0))(())1(( 11

2121

1

110 =+++++ 
=

+
itr

i

n

i

i

ar

n etreara   

but the system of the interpolating conditions for s(ti) are precised by the iterations of the method 

of adding-removing knots. The coefficients of solution with the form (12) in the considered case are 

λ0 = 60.57700, λ1 = -74.94558, λ2 = 0, λ3 = 59.82526, λ4 = -27.97635, λ5 = 4.53229, λ6 = 15.55907.  

The corresponding control function u is given by  

 .)))((()()(
1
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ii

ttr

i ttrttetu i   

We note that in our case point (1.5, 2.8) does not affect our solution s(t) due to the results of the 

method of adding-removing interpolation knots (we obtain λ2 = 0).  
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To compare our result to the one in the case when there is the requirement to pass the trajectory 

through specific points we also consider the interpolation version of our problem (7), i.e., when εi = 0, 

i = 1,…n. The solution of this interpolation problem is exponential spline with polynomial coefficients 

(12) with the coefficients λ0 = 73.17760, λ1 = -114.69439, λ2 = 30.33115, λ3 = 63.22836, λ4 = -29.31013, 

λ5 = 3.73303, λ6 = 20.35442.  

The comparison of the objective functional for the solutions of the problem with inequality type 

constraints (||u(t)|| = 20.0912) and the interpolation problem (||u(t)|| = 68.8480) proves that the rejection 

of exact interpolating conditions implies the decreasing in the value of the cost functional. 

The corresponding graphs of the solution of (7) in form (12) for both considered cases and the 

control function are shown in Fig. 1 and Fig. 2. 

 
 

Fig. 1. State trajectories for Example (black line 

for the solution of the problem with inequality 

type constraints, blue line for the interpolating 

case, red points indicate via points, plus ( + ) 

signs define the possible deviattions) 

Fig. 2. Control low for Example (black line 

for the solution of the problem with inequality 

type constraints, blue line for the interpolating 

case) 

 

Conclusions 

The paper is devoted to the spline-based method which allows to analyse the optimal control 

problem with initial condition by reducing it to the problem of smoothing splines. The method is 

proposed for the special case of the optimal control problem when a dynamical system is associated with 

the second order linear differential equation. The suggested technique could also be used for optimal 

control problems with dynamical systems, which can be reduced to linear differential equations of the 

order greater than the second. 
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